htw saar
Zurück zur Hauptseite

Version des Moduls auswählen:
XML-Code

Angewandte Informatik und Industrie 4.0

Modulbezeichnung: Angewandte Informatik und Industrie 4.0
Studiengang: Maschinenbau / Produktionstechnik, Bachelor, ASPO 01.10.2021
Code: DBMAB-350
SWS/Lehrform: -
ECTS-Punkte: 8
Studienjahr: 3
Pflichtfach: ja
Arbeitssprache:
Deutsch
Prüfungsart:
2 benotete Teilprüfungen:
 
• Schriftliche Teilklausur „Angewandte Informatik“ (Dauer 90 Min., 100 Pkt.)
  o Die Klausur wird im 6. Semester (Block 6A) gemäß Prüfungsplan geschrieben.
 
• Schriftliche Teilklausur „Industrie 4.0“ (Dauer 90 Min., 100 Pkt.)
  o Die Klausur wird im 6. Semester (Block 6A) gemäß Prüfungsplan geschrieben.

[letzte Änderung 09.09.2021]
Verwendbarkeit / Zuordnung zum Curriculum:
DBMAB-350 Maschinenbau / Produktionstechnik, Bachelor, ASPO 01.10.2021, 3. Semester, Pflichtfach
Arbeitsaufwand:
Der Gesamtaufwand des Moduls beträgt 240 Arbeitsstunden.
Empfohlene Voraussetzungen (Module):
Keine.
Sonstige Vorkenntnisse:
Keine.

[letzte Änderung 09.09.2021]
Als Vorkenntnis empfohlen für Module:
Modulverantwortung:
Prof. Dr.-Ing. Jürgen Kohlrusch
Dozent: Prof. Dr.-Ing. Jürgen Kohlrusch

[letzte Änderung 11.06.2021]
Lernziele:
Angewandte Informatik:
 
Es werden grundlegende Konzepte der Informatik vermittelt und auf einfache Problemstellungen angewendet. Zu diesem Zweck erhalten die Studierenden eine Einführung in die Programmierung. Die Studierenden verstehen den Begriff Algorithmus. Sie kennen beispielsweise Algorithmen zur Suche sowie zum Sortieren von Daten und unterscheiden Algorithmen bezüglich ihrer Effizienz. Sie kennen verschiedene Datenstrukturen. Die Studierenden sind in der Lage, Algorithmen zu einfachen Problemstellungen zu implementieren. Die Studierenden sind sich der zunehmenden Bedeutung der Informatik für die Ingenieursdisziplinen bewusst.
 
Industrie 4.0:
 
Zukünftig wird der Einfluss der Digitalisierung weitreichende Änderungen der Arbeitswelt in Industrie
und Handel haben. Durch das Teilmodul „Industrie 4.0“ verstehen die Studierenden, welche Einflussgrößen auf die zukünftigen Prozesse in der Industrie wirken, und welche Herausforderungen dabei auf
sie zukommen können. Die Studierenden können die Unterschiede zwischen heute bereits automatisierten Geschäftsprozessen und einer vollständig vernetzten „Smart Factory“, wie sie Industrie 4.0 zukünftig andenkt, aufzeigen und beschreiben. Sie kennen sog. cyber-physische Systeme und verstehen,
wie strukturierte, semistrukturierte und unstrukturierte Daten in großen Mengen verarbeitet werden
können („Big Data“). Sie sind mit den Grundlagen der Künstlichen Intelligenz vertraut und erkennen
deren praktische Potenziale in zukünftigen Geschäftsfeldern.
Das Modul „Angewandte Informatik und Industrie 4.0“ dient der Erweiterung und der Stärkung der fachlichen Kompetenz „Wissen und Verstehen“ (Wissensverbreiterung und -vertiefung) und der instrumentalen Kompetenz (Anwendungs- und Lösungskompetenz).

[letzte Änderung 09.09.2021]
Inhalt:
Inhalte zur Vorlesung zu angewandter Informatik:
 
• Algorithmus: Definition und Bedeutung
• Datenstrukturen
• Einführung in die Programmierung
• Anwendung auf Suchverfahren
• Effizienz von Algorithmen
• Anwendung auf einfache und höhere Sortierverfahren samt Vergleich der Leistungsfähigkeit Inhalte zur Vorlesung
  zu Industrie 4.0
• Einführung in die Industrie 4.0
  o Smart Home, Smart Car, Smart Factory – Anwendungsbeispiele
  o Der Mensch im digitalisierten Umfeld – Augmented-, Virtual- and Mixed-Reality
  o Betriebsdaten (BDE)- und Maschinendatenerfassung (MDE)
  o Rechtliche Herausforderungen
 
• Cyber-physische Systeme
  o RFID, GPS
  o Netzwerktechnik, Servercluster
  o Datensicherheit, -sicherung und Datenschutz
  o Robotik und Kollaboration Mensch/ Maschine
 
• Big Data und Künstliche Intelligenz (KI)
  o Strukturierte, semistrukturierte und unstrukturierte Daten
  o Volume, Variety, Velocity, die „V’s“ von Big Data
  o Einführung von Hadoop, HDFS und Mapreduce
  o Funktionsweise Künstlicher Neuronaler Netze und Fuzzy Logic
  o Schwarmintelligenz
  o Big Data und KI in der Praxis

[letzte Änderung 09.09.2021]
Weitere Lehrmethoden und Medien:
Vorlesungen: Vortrag (darbietend), Demonstration (darbietend), Frage- und Impulsunterricht (erarbeitend), Unterrichtsgespräch (erarbeitend), Bearbeitung konkreter Problemstellungen in Gruppenarbeit
(erarbeitend), Fallstudien und Schulungen im EDV-Raum (erarbeitend)

[letzte Änderung 09.09.2021]
Sonstige Informationen:
Keine

[letzte Änderung 09.09.2021]
Literatur:
• R. Sedgewick, K. Wayne (2014): Algorithmen und Datenstrukturen (4. Auflage); Pearson, Hallbergmoos
• J. Bewersdorff (2018): Objektorientierte Programmierung mit JavaScript; Springer Vieweg,
Wiesbaden
• A. Bauer, H. Günzel (Hrsg.): Data-Warehouse-System – Architektur, Entwicklung, Anwendung;
dpunkt Verlag; Heidelberg
• P. Chamoni, P. Gluchowski (Hrsg.): Analytische Informationssysteme – Business Intelligence Technologien und -Anwendungen; Springer Verlag; Berlin/Heidelberg
• J. Freiknecht: Big Data in der Praxis – Lösungen mit Hadoop, HBase und Hive. Daten speichern, aufbereiten, visualisieren; Carl Hanser; München
• Th. Schulz: Industrie 4.0: Potenziale erkennen und umsetzen, Vogel Business Media
• R. M. Wagner: Industrie 4.0 für die Praxis, Springer Gabler

[letzte Änderung 09.09.2021]
[Wed Aug 10 09:20:26 CEST 2022, CKEY=aaiui4, BKEY=aswmpt, CID=DBMAB-350, LANGUAGE=de, DATE=10.08.2022]