htw saar
Zurück zur Hauptseite

Version des Moduls auswählen:

Englisch

Mathematik II

Modulbezeichnung: Mathematik II
Modulbezeichnung (engl.): Mathematics II
Studiengang: Biomedizinische Technik, Bachelor, ASPO 01.10.2013
Code: BMT1200
SWS/Lehrform: 4V+2U (6 Semesterwochenstunden)
ECTS-Punkte: 8
Studiensemester: 2
Pflichtfach: ja
Arbeitssprache:
Deutsch
Prüfungsart:
Klausur
Zuordnung zum Curriculum:
BMT1200 Biomedizinische Technik, Bachelor, ASPO 01.10.2013, 2. Semester, Pflichtfach
Arbeitsaufwand:
Die Präsenzzeit dieses Moduls umfasst bei 15 Semesterwochen 90 Veranstaltungsstunden (= 67.5 Zeitstunden). Der Gesamtumfang des Moduls beträgt bei 8 Creditpoints 240 Stunden (30 Std/ECTS). Daher stehen für die Vor- und Nachbereitung der Veranstaltung zusammen mit der Prüfungsvorbereitung 172.5 Stunden zur Verfügung.
Empfohlene Voraussetzungen (Module):
Keine.
Als Vorkenntnis empfohlen für Module:
Modulverantwortung:
Prof. Dr. Wolfgang Langguth
Dozent:
Prof. Dr. Wolfgang Langguth


[letzte Änderung 10.11.2013]
Lernziele:
Die Studiernden verfügen über ein erweitertes Wissen und entsprechende handwerkliche Fertigkeiten der Differential- und Integralrechnung. Sie können Taylorreihen für verschiedene qualitative und approximative Abschätzungen bei verschiedenen Problemstellungen der Elektrotechnik einsetzen und verfügen über das nötige Verständnis und die erforderlichen Rechentechniken, um Fourierreihen zur Beschreibung zeitlich periodischer Vorgänge einzusetzen. Mit der Kenntnis der Lösungsstruktur von Differentialgleichungen zweiter Ordnung und den Fertigkeiten, die Lösungen zu bestimmen, sind sie in der Lage, das grundsätzliche Zeitverhalten von elementaren und komplexen Systemen verschiedener Fachgebiete der Elektrotechnik zu untersuchen und zu berechnen.

[letzte Änderung 10.11.2013]
Inhalt:
1. Differentialrechnung
1.1. Der Begriff der Ableitung
1.2. Grundregeln der Differentiation
1.3. Die Ableitung elementarer Funktionen
1.4. Das Differential einer Funktion
1.5. Der Mittelwertsatz der Differentialrechnung
1.6. Berechnung von Grenzwerten
2. Integralrechnung
2.1. Das unbestimmte Integral
2.2. Das bestimmte Integral
2.3. Anwendungen der Integralrechnung in der Geometrie
2.4. Integrationsverfahren
2.5. Anwendungen der Integralrechnung
2.6. Numerische Integration
2.7. Uneigentliche Integrale
3. Unendliche Reihen
3.1. Reihen mit konstanten Gliedern
3.2. Folgen und Reihen von Funktionen
3.3. Potenzreihen
3.4. Taylorreihen
3.5. Fourierreihen
4. Differentialgleichungen (DGl)
4.1. Grundbegriffe
4.2. DGl 1. Ordnung
4.2.1. Geometrische Betrachtungen
4.2.2. Die DGl 1. Ordnung mit trennbaren Variablen
4.2.3. Integration einer DGl durch Substitution
4.2.4. Lineare DGl 1. Ordnung
4.2.5. Lineare DGl 1. Ordnung mit konstanten Koeffizienten
4.3. DGl 2. Ordnung, die auf DGl 1. Ordnung zurückgeführt werden können
4.3.1. Lineare DGl 2. Ordnung mit konstanten Koeffizienten
4.3.2. Definition einer linearen DGl mit konstanten Koeffizienten
4.3.3. Eigenschaften der linearen DGl
4.3.4. Die homogene lineare DGl 2. Ordnung
4.3.5. Die inhomogene DGl 2. Ordnung

[letzte Änderung 10.11.2013]
Lehrmethoden/Medien:
Tafel, Overhead, Beamer, Skript (angestrebt)

[letzte Änderung 10.11.2013]
Literatur:
Brauch; Dreyer; Haacke: Mathematik für Ingenieure, Teubner, 2003
Bronstein; Semendjajew; Musiol; Mühlig: Taschenbuch der Mathematik, Harri Deutsch, 2000
Burg, Haf, Wille: Höhere Mathematik für Ingenieure, Band 1-3, Teubner, 2003
Dallmann; Elster: Einführung in die höhere Mathematik I-III, Gustav Fischer, 1991
Dürrschnabel: Mathematik für ingenieure, Teubner, 2004
Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 1-3, Vieweg
Papula: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg, 2000
Stöcker: Taschenbuch mathematischer Formeln und moderner Verfahren, Harri Deutsch, Frankfurt

[letzte Änderung 10.11.2013]
[Fri Apr 26 08:40:16 CEST 2019, CKEY=bmim, BKEY=bmt2, CID=BMT1200, LANGUAGE=de, DATE=26.04.2019]