htw saar Piktogramm
Zurück zur Hauptseite

Version des Moduls auswählen:
XML-Code

Mathematik 2

Modulbezeichnung: Mathematik 2
Studiengang: Biomedizinische Technik, Bachelor, ASPO 01.10.2018
Code: BMT2201.MA2
SWS/Lehrform: 4V+2U (6 Semesterwochenstunden)
ECTS-Punkte: 8
Studiensemester: 2
Pflichtfach: ja
Arbeitssprache:
Deutsch
Prüfungsart:
Klausur

[letzte Änderung 22.11.2018]
Zuordnung zum Curriculum:
BMT2201.MA2 Biomedizinische Technik, Bachelor, ASPO 01.10.2018, 2. Semester, Pflichtfach
Arbeitsaufwand:
Die Präsenzzeit dieses Moduls umfasst bei 15 Semesterwochen 90 Veranstaltungsstunden (= 67.5 Zeitstunden). Der Gesamtumfang des Moduls beträgt bei 8 Creditpoints 240 Stunden (30 Std/ECTS). Daher stehen für die Vor- und Nachbereitung der Veranstaltung zusammen mit der Prüfungsvorbereitung 172.5 Stunden zur Verfügung.
Empfohlene Voraussetzungen (Module):
Keine.
Als Vorkenntnis empfohlen für Module:
Modulverantwortung:
Prof. Dr. Peter Birkner
Dozent:
Dr. Stephan Schaeidt


[letzte Änderung 26.08.2020]
Lernziele:
Die Studierenden können mit komplexen Zahlen und komplexen Funktionen rechnen und sie in der komplexen Ebene darstellen. Sie verfügen über ein erweitertes Wissen und entsprechende handwerkliche Fertigkeiten der Differential- und Integralrechnung. Mit der Kenntnis der Lösungsstruktur von Differentialgleichungen zweiter Ordnung und den Fertigkeiten, die Lösungen zu bestimmen, sind sie in der Lage, das grundsätzliche Zeitverhalten von elementaren und komplexen Systemen verschiedener Fachgebiete der Elektrotechnik zu untersuchen und zu berechnen.

[letzte Änderung 22.11.2018]
Inhalt:
Komplexe Zahlen und Funktionen
Definition und Darstellung
Die Gaußsche Zahlenebene
Darstellungsformen und Umrechnung
Grundrechenarten
Potenzieren und Wurzeln komplexer Zahlen
 
Differentialrechnung II
Das Differential einer Funktion
Extrema und Wendepunkte
 
Funktionen mit mehreren unabhängigen Variablen
Der n-dimensionale Raum
Funktionen mehrerer Variabler
Differentialrechnung
Bestimmung von Extrema
Gradient, Divergenz, Rotation
 
Integralrechnung II
Integrationsverfahren
Anwendungen der Integralrechnung
Uneigentliche Integrale
Numerische Integration
Wegintegral, Definition und Beispiele
 
Differentialgleichungen (DGl)
Grundbegriffe
DGl 1. Ordnung
- Geometrische Betrachtungen
- Die DGl 1. Ordnung mit trennbaren Variablen
- Trennung der Variablen und Variation der Konstanten
DGl 2. Ordnung
- Lineare DGl 2. Ordnung mit konstanten Koeffizienten
- Eigenschaften der linearen DGl
- Die homogene lineare DGl 2. Ordnung
-Die inhomogene DGl 2. Ordnung
Systeme von linearen DGl mit konstanten Koeffizienten

[letzte Änderung 17.07.2019]
Lehrmethoden/Medien:
Tafel, Overhead, Beamer, Skript (angestrebt)

[letzte Änderung 22.11.2018]
Literatur:
Brauch, Wolfgang; Dreyer, Hans-Joachim; Haacke, Wolfhart: Mathematik für Ingenieure, Teubner
Bronstein, Ilja; Semendjajew, Konstantin; Musiol, Gerhard; Mühlig, Heiner: Taschenbuch der Mathematik, Harri Deutsch
Burg, Klemens; Haf, Herbert; Wille, Friedrich: Höhere Mathematik für Ingenieure, Band 1-3, Springer Vieweg
Dallmann, Herbert; Elster, Karl-Heinz: Einführung in die höhere Mathematik I-III, Gustav Fischer, 1991
Dürrschnabel, Klaus: Mathematik für Ingenieure: eine Einführung mit Anwendungs- und Alltagsbeispielen, Teubner, 2004
Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Band 1-3, Springer Vieweg
Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Springer Vieweg
Stöcker, Horst: Taschenbuch mathematischer Formeln und moderner Verfahren, Harri Deutsch, Frankfurt

[letzte Änderung 17.07.2019]
[Thu Jul 29 14:24:33 CEST 2021, CKEY=b3BMT2201.MAT2, BKEY=bmt3, CID=BMT2201.MA2, LANGUAGE=de, DATE=29.07.2021]