htw saar QR-encoded URL
Back to Main Page Choose Module Version:
emphasize objectives XML-Code


Materials Technology

Module name (EN):
Name of module in study programme. It should be precise and clear.
Materials Technology
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Mechanical Engineering, Bachelor, ASPO 01.10.2023
Module code: DFBME-316
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
4VU (4 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
Semester: 3
Mandatory course: yes
Language of instruction:
Written exam, 120 min.; Participation in 5 laboratory experiments and 2 small group exercises

[updated 16.11.2023]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

DFBME-316 (P610-0630) Mechanical Engineering, Bachelor, ASPO 01.10.2019 , semester 3, mandatory course
DFBME-316 (P610-0630) Mechanical Engineering, Bachelor, ASPO 01.10.2023 , semester 3, mandatory course
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Moritz Habschied
Lecturer: Prof. Dr. Moritz Habschied

[updated 28.04.2023]
Learning outcomes:
After successfully completing this module, students will be familiar with the main material groups and will be able to describe the interrelationships between materials, manufacturing and components with a focus on the structural materials used in mechanical engineering.
They will be able to recognize the relationships between atomic solid structure, microscopic observations, and material properties.
They will be familiar with the tensile test, hardness test methods and the charpy impact test and will be able to determine and interpret the corresponding characteristic values. They will be able to attribute specific material behavior to the respective microstructure.
They will be able to assess material properties and derive the resulting possible uses.
In practical exercises, they will learn to work in teams to acquire new knowledge and to work on interdisciplinary tasks. They will be able to reflect their opinions and defend them with factual arguments.

[updated 16.11.2023]
Module content:
- Main groups of materials
- Structural description of solids
 o Types of bonds
 o Lattice structures
 o Perturbation-free and -contaminated crystals
- Mechanical material behavior
- Alloy theory
- Influence of materials on production technology

[updated 16.11.2023]
Teaching methods/Media:
Lecture (3 Hours per semester week (=45 UE)): Seminaristic instruction
Exercise (1 hour per semester week (=15 UE)): lab experiments/exercises in the lecture hall on the following topics: Tensile testing (lab), Charpy impact test (lab), Hardness test (lab), Jominy end-quench test (lab), Hardening of aluminum alloys (lab), iron-carbon phase diagram (exercise), steel heat treatment (exercise)

[updated 16.11.2023]
Recommended or required reading:
- Bargel/Schulze: „Werkstoffkunde“, Springer-Verlag, Berlin, Heidelberg, New York, 12. bearb. Auflage 2018
- Weißbach W., Dahms M., Jaroschek C.: „Werkstoffe und ihre Anwendungen: Metalle, Kunststoffe und mehr“, Springer Vieweg; 20., überarb. Auflage 2018
- Hornbogen E., Eggeler G. und Werner E.: Werkstoffe: Aufbau und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundwerkstoffen, Springer-Verlag
- Läpple, V.: „Wärmebehandlung des Stahls“, Verlag Europa-Lernmittel, Haan-Gruiten, 11. aktualisierte Auflage 2014
- Läpple, V., Kammer, C., Steuernagel, L.: „Werkstofftechnik Maschinenbau“, Verlag Europa-Lernmittel, Haan-Gruiten, 6. Auflage 2017
- Greven, E., Magin, W.: „Werkstoffkunde und Werkstoffprüfung für technische Berufe“, Verlag Handwerk und Technik; 18. Auflage 2015

[updated 16.11.2023]
[Sat Jun 15 09:09:05 CEST 2024, CKEY=dwg, BKEY=dfhim3, CID=DFBME-316, LANGUAGE=en, DATE=15.06.2024]