htw saar
Back to Main Page

Choose Module Version:


Engineering Design Optimization

Module name (EN): Engineering Design Optimization
Degree programme: Mechanical Engineering, Master, ASPO 01.10.2018
Module code: MMDF203
Hours per semester week / Teaching method: 10V (10 hours per week)
ECTS credits: 12
Semester: 8
Mandatory course: yes
Language of instruction:
Written examination

[updated 12.09.2004]
Applicability / Curricular relevance:
MMDF203 Mechanical Engineering, Master, ASPO 01.10.2018, semester 8, mandatory course
MAM-8.K Engineering and Management, Master, ASPO 01.10.2004, semester 8, mandatory course
150 class hours (= 112.5 clock hours) over a 15-week period.
The total student study time is 360 hours (equivalent to 12 ECTS credits).
There are therefore 247.5 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
Recommended knowledge:
Compulsory subjects (optional group): Engineering

[updated 14.08.2012]
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Walter Calles
Lecturer: Prof. Dr. Walter Calles

[updated 06.09.2004]
Learning outcomes:
After completing this course, students will have learned the principles, approaches and methods used in optimizing engineering designs with respect weight, design for X methodologies and reliability, and will be able to assess and apply them.

[updated 12.09.2004]
Module content:
1. Introduction and overview: General strategies for design optimzation
2. Lightweight construction as optimization strategy: computational methods in lightweight construction; calculations in the elastic, elasto-plastic and plastic ranges; instability; shape optimization; special supports; sandwich structures; shells.
3. Design for X strategies: integrating ‘optimization’ and ‘design’ into the engineering design process; the basic principles of design ‘simple, well-defined, safe’; design for forces; design for manufacture and design for assembly; design for materials; the principles of functional integration; functional separation; differential and integral design techniques; environmentally compatible design; recycling strategies.
4. Reliability as optimization strategy: design for safety; redundancy; fail safe and safe life.
5. Optimization techniques: current multimedia tools for the concept development and design process; internet-based design; Digital Mock-up (DMU); virtual reality (VR); rapid prototyping (RP); outlook.

[updated 12.09.2004]
Teaching methods/Media:
Accompanying lecture notes

[updated 12.09.2004]
Recommended or required reading:
Roloff/Matek:  Maschinenelemente
Dubbel:  Taschenbuch des Maschinenbaus
Pahl/Beitz:  Konstruktionslehre
Ehrlenspiel:  Integrierte Produktentwicklung
B. Klein:  Leichtbau-Konstruktion, VDI-Richtlinie 2222

[updated 12.09.2004]
[Thu Aug 18 16:25:41 CEST 2022, CKEY=mka, BKEY=dmm, CID=MMDF203, LANGUAGE=en, DATE=18.08.2022]