htw saar
Back to Main Page

Choose Module Version:


Mathematics I

Module name (EN): Mathematics I
Degree programme: Electrical Engineering, Bachelor, ASPO 01.10.2005
Module code: E101
Hours per semester week / Teaching method: 4V+2U (6 hours per week)
ECTS credits: 8
Semester: 1
Mandatory course: yes
Language of instruction:
Written examination
Curricular relevance:
E101. Biomedical Engineering, Bachelor, ASPO 01.10.2011, semester 1, mandatory course, course inactive since 28.11.2013
E101 Electrical Engineering, Bachelor, ASPO 01.10.2005, semester 1, mandatory course
90 class hours (= 67.5 clock hours) over a 15-week period.
The total student study time is 240 hours (equivalent to 8 ECTS credits).
There are therefore 172.5 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
Recommended knowledge:
Mathematics foundation course

[updated 10.03.2010]
Recommended as prerequisite for:
E201 Mathematics II
E404 Electric Power Supply Systems I
E405 Electrical Machines I
E410 Signal and Systems Theory
E412 Fundamentals of Transmission Technology
E506 Building Services Engineering I
E513 High-Voltage Engineering I
E515 Communications Engineering
E518 High-Frequency Engineering

[updated 13.03.2010]
Module coordinator:
Prof. Dr. Wolfgang Langguth
Prof. Dr. Wolfgang Langguth
Prof. Dr. Barbara Grabowski
Prof. Dr. Harald Wern

[updated 10.03.2010]
Learning outcomes:
After successfully completing this course students will have an elementary understanding of vector calculus and of strategies for solving systems of linear equations and will have acquired a basic appreciation of analysis. Equipped with these mathematical skills, students will be able solve elementary problems in electrical engineering and will have the requisite background to tackle more advanced mathematical topics.

[updated 10.03.2010]
Module content:
1. Vector calculus
 1.1 Basic terminology of vector calculus
 1.2 Vectors in an orthogonal coordinate system
 1.3 The scalar product
 1.4 The vector product
2. Systems of linear equations
 2.1 Matrices
 2.2 Determinants
 2.3 Systems of linear equations
3. Fundamentals of analysis
 3.1 Functions
 3.2 Special functions
 3.3 Complex numbers and functions
 3.4 Loci

[updated 10.03.2010]
Teaching methods/Media:
Blackboard, overhead projector, video projector, lecture notes (in preparation)

[updated 10.03.2010]
Recommended or required reading:
PAPULA: Mathematik für Ingenieure und Naturwissenschaftler, Band 1-3, Vieweg, 2000
Burg, Haf, Wille: Höhere Mathematik für Ingenieure, Band 1-3, Teubner, 2003
Brauch, Dreyer, Haacke: Mathematik für Ingenieure, Teubner, 2003
Dürrschnabel: Mathematik für Ingenieure, Teubner, 2004
DALLMANN, ELSTER: Einführung in die höhere Mathematik III, Gustav Fischer, 1991
PAPULA: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg, 2000
BRONSTEIN, SEMENDJAJEW, MUSIOL, MÜHLIG: Taschenbuch der Mathematik, Deutsch 2000
STÖCKER: Taschenbuch der Mathematik, Harri Deutsch Verlag, Frankfurt

[updated 10.03.2010]
[Mon Jul 13 07:27:14 CEST 2020, CKEY=emi, BKEY=e, CID=E101, LANGUAGE=en, DATE=13.07.2020]