htw saar
Back to Main Page

Choose Module Version:


Mathematics III

Module name (EN): Mathematics III
Degree programme: Electrical Engineering, Bachelor, ASPO 01.10.2005
Module code: E301
Hours per semester week / Teaching method: 3V+1U (4 hours per week)
ECTS credits: 5
Semester: 3
Mandatory course: yes
Language of instruction:
Written examination
Curricular relevance:
E301. Biomedical Engineering, Bachelor, ASPO 01.10.2011, semester 3, mandatory course, course inactive since 28.11.2013
E301 Electrical Engineering, Bachelor, ASPO 01.10.2005, semester 3, mandatory course
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
E201 Mathematics II

[updated 10.03.2010]
Recommended as prerequisite for:
E404 Electric Power Supply Systems I
E405 Electrical Machines I
E410 Signal and Systems Theory
E412 Fundamentals of Transmission Technology
E506 Building Services Engineering I
E513 High-Voltage Engineering I
E515 Communications Engineering
E518 High-Frequency Engineering

[updated 13.03.2010]
Module coordinator:
Prof. Dr. Wolfgang Langguth
Prof. Dr. Wolfgang Langguth
Prof. Dr. Barbara Grabowski
Prof. Dr. Harald Wern

[updated 10.03.2010]
Learning outcomes:
After successfully completing this course, students will have acquired a solid theoretical grounding and the practical skills to apply Laplace transformation techniques to problems of interest in electrical engineering. Using these techniques and their knowledge of systems of linear equations, students will have the means to systematically solve systems of coupled differential equations and thus examine smaller systems analytically.
By learning about higher dimensional spaces, students will acquire the basics needed for vector analysis and for analysing the functional interrelationships of multivariate or multiparameter physical quantities.
The module also offers a basic introduction to eigenvalue problems and how these are used to handle collective variables in mechanical and electrical systems and thus provides a deeper understanding of complex electrical engineering systems.

[updated 10.03.2010]
Module content:
1.Fourier and Laplace transformations
 1.1.The Fourier transformation
 1.2.The Laplace transformation
 1.3.Back transformation methods
 1.4.Comparison of the Fourier and Laplace transformations
2.Functions with several independent variables
 2.1.n-dimensional space
 2.2.Multivariate functions
 2.3.Differential calculus
 2.4.Determining extrema
3.Eigenvalue theory
 3.1.An introductory example
 3.2.The eigenvalue problem
 3.3.Eigenvalue theory, Hermite and symmetric matrices

[updated 10.03.2010]
Teaching methods/Media:
Blackboard, overhead projector, video projector, lecture notes (planned)

[updated 10.03.2010]
Recommended or required reading:
PAPULA: Mathematik für Ingenieure und Naturwissenschaftler, Band 1-3, Vieweg, 2000
Burg, Haf, Wille: Höhere Mathematik für Ingenieure, Band 1-3, Teubner, 2003
Brauch, Dreyer, Haacke: Mathematik für Ingenieure, Teubner, 2003
Dürrschnabel: Mathematik für Ingenieure, Teubner, 2004
DALLMANN, ELSTER: Einführung in die höhere Mathematik I-III, Gustav Fischer, 1991
PAPULA: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg, 2000
BRONSTEIN, SEMENDJAJEW, MUSIOL, MÜHLIG: Taschenbuch der Mathematik, Deutsch 2000
STÖCKER: Taschenbuch der Mathematik, Harri Deutsch Verlag, Frankfurt

[updated 10.03.2010]
[Mon Jul 13 06:34:26 CEST 2020, CKEY=emic, BKEY=e, CID=E301, LANGUAGE=en, DATE=13.07.2020]