|
|
Module code: E2205 |
|
2V+2PA (4 hours per week) |
5 |
Semester: 2 |
Mandatory course: yes |
Language of instruction:
German |
Assessment:
Project work
[updated 08.01.2020]
|
E2205 (P211-0102) Electrical Engineering and Information Technology, Bachelor, ASPO 01.10.2018
, semester 2, mandatory course, technical
|
60 class hours (= 45 clock hours) over a 15-week period. The total student study time is 150 hours (equivalent to 5 ECTS credits). There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
|
Recommended prerequisites (modules):
None.
|
Recommended as prerequisite for:
E2408 CAD in Microelectronics
[updated 05.02.2021]
|
Module coordinator:
Studienleitung |
Lecturer: Studienleitung
[updated 10.09.2018]
|
Learning outcomes:
In this module, students will learn to evaluate the design phase of the development of an electrotechnical product, taking into account the mechanical and electrical regulations. After successfully completing this course, students will be able to read technical drawings. - They will be able to design and display simple mechanical constructions with corresponding elements using 3D-CAD tools. - They will be able to estimate which joining techniques are suitable depending on the material and application. - Students will be able to read electrical circuit diagrams and be familiar with the most important professional standards in the field of electrical installation. - They will have designed a partial aspect of a more complex product in their own project at the system integration level and documented it by means of technical drawings and/or electrical circuit diagrams.
[updated 08.01.2020]
|
Module content:
1 The standardized presentation of technical products 1.1 Basics of technical drawing: parallel projection, views, sections, dimensioning, component and assembly drawings. 1.2 Tolerances and fits, fit systems, fit selection 2 Elements of technical systems 2.1 Constructing enclosures in plate, shell and frame designs 2.2 Joining techniques and elements: welding, soldering, gluing, screws, rivets, pins 2.3 Material science 2.4 Materials used in electrical engineering 3 Creating and reading simple electrical circuit diagrams and circuit diagrams 4 Technical regulations for electrical installation and the assembly of electrical systems 5 Designing and testing simple electronic circuits 6 Standards and technical guidelines for the construction of electrical systems
[updated 08.01.2020]
|
Teaching methods/Media:
Blackboard, projector, lecture notes, 3D-CAD tools (like Autodesk Inventor), laboratory work, 3D printer, electrical circuit design
[updated 08.01.2020]
|
Recommended or required reading:
DIN e.V.; ZVEH: Elektrotechniker-Handwerk: DIN-Normen und technische Regeln für die Elektroinstallation (Normen-Handbuch), Beuth, (latest edition) Fischer, Hans: Werkstoffe in der Elektrotechnik, Hanser, (latest edition) Hoischen, Hans: Technisches Zeichnen, Cornelsen, Berlin, (latest edition) Krause, W.: Grundlagen der Konstruktion, Hanser, München, 2008 Wöstenkühler, Gerd: Grundlagen der Digitaltechnik: elementare Komponenten, Funktionen und Steuerungen, Hanser, (latest edition) Zickert, Gerald: Elektrokonstruktion: Gestaltung, Schaltpläne und Engineering mit EPLAN, Hanser, 2015, ISBN 978-3446443624
[updated 08.01.2020]
|