htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
emphasize objectives XML-Code

flag



Theoretical Electrical Engineering 1

Module name (EN):
Name of module in study programme. It should be precise and clear.
Theoretical Electrical Engineering 1
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Electrical Engineering and Information Technology, Bachelor, ASPO 01.10.2018
Module code: E2304
SAP-Submodule-No.:
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
P211-0133
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
2V+1U (3 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
5
Semester: 3
Mandatory course: yes
Language of instruction:
German
Assessment:
Exam

[updated 30.10.2023]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

E2304 (P211-0133) Electrical Engineering and Information Technology, Bachelor, ASPO 01.10.2018 , semester 3, mandatory course, technical
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
45 class hours (= 33.75 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 116.25 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
None.
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Martin Buchholz
Lecturer: Prof. Dr. Martin Buchholz

[updated 10.09.2018]
Learning outcomes:
After successfully completing this module, students will be able to identify Maxwell´s equations and characterize their areas of applications. They will be able to independently derive the boundary and transition conditions and completely decouple Maxwell´s equations using the coaxial line as an example, and finally solve and interpret the telegraph equations. Furthermore, quadrupoles provide the basis for understanding, applying, and evaluating quadrupoles. They will also be able to determine switch-on and switch-off operations.

[updated 30.10.2023]
Module content:
1. From Maxwell’s theory to the coaxial conductor
2. Quadripole theory
2. Circuit forms, open circuit and short circuit
3. Matrix chain, resistance matrix, conductance matrix,
4. Chain circuit, parallel circuit, series circuit, four-pole chains

[updated 30.10.2023]
Teaching methods/Media:
Presentation, blackboard, lecture notes

[updated 08.01.2020]
Recommended or required reading:
Baumeister, Johann: Stable Solution of Inverse Problems, Vieweg, Braunschweig, 1987
Becker, Klaus-Dieter: Theoretische Elektrotechnik, VDE, Berlin, 1982, ISBN 3-80071275-X
Bergmann, Ludwig; Schaefer, Clemens: Lehrbuch der Experimentalphysik, Bd. III Teil 1: "Wellenoptik", Walter de Gruyter, Berlin, 1962
Blume, Siegfried: Theorie elektromagnetischer Felder, Hüthig, Heidelberg, 1991, 3. Aufl.
Collin, Robert E.: Field theory of guided waves, McGraw-Hill, New York, 1960
Hafner, Christian: Numerische Berechnung elektromagnetischer Felder, Springer, Berlin, 1987, ISBN 3-540-17334-X
Hofmann, Hellmut: Das elektromagnetische Feld: Theorie u. grundlegende Anwendungen, Springer, Wien, (akt. Aufl.)
Jänich, Klaus: Analysis für Physiker und Ingenieure, Springer, Berlin
Schäfke, Friedrich Wilhelm: Einführung in die Theorie der speziellen Funktionen der mathematischen Physik, Springer, Berlin, 1963
Simonyi, Károly: Theoretische Elektrotechnik, VEB Deutscher Verlag der Wissenschaften, Berlin, 1977

[updated 30.10.2023]
[Sun Oct  6 06:17:10 CEST 2024, CKEY=e3E2304, BKEY=ei, CID=E2304, LANGUAGE=en, DATE=06.10.2024]