htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:


Optical Engineering

Module name (EN):
Name of module in study programme. It should be precise and clear.
Optical Engineering
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Electrical Engineering, Master, ASPO 01.10.2005
Module code: E911
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
2V (2 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
Semester: 9
Mandatory course: yes
Language of instruction:
Written examination

[updated 12.03.2010]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

E911 (P213-0179) Electrical Engineering, Master, ASPO 01.10.2005 , semester 9, mandatory course
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
30 class hours (= 22.5 clock hours) over a 15-week period.
The total student study time is 60 hours (equivalent to 2 ECTS credits).
There are therefore 37.5 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Albrecht Kunz
Prof. Dr. Albrecht Kunz

[updated 12.03.2010]
Learning outcomes:
Students who successfully complete this course will be acquainted with the main components of optical communications engineering and how they interact in an optical DWDM system.
Students will also be able to understand and characterize the latest developments in optical communications engineering.
Successfully completing this module will allow students to contribute meaningfully to current research and development projects in optical communications.

[updated 12.03.2010]
Module content:
2.Optical fibres
3.Optical transmitters and receivers
4.Couplers and switches
5.Coupled mode theory
6.Integrated optics
7.DWDM systems

[updated 12.03.2010]
Teaching methods/Media:
Overhead transparencies, PC, video projector

[updated 12.03.2010]
Recommended or required reading:
Brückner, V.:  Optische Nachrichtentechnik, Grundlagen und Anwendungen, Vieweg Verlag,
Schiffner, G.:  Optische Nachrichtentechnik, Einführung in die hochbitratige optische Informationsübertragung, Vieweg Verlag,
Unger, H.-G.:  Optische Nachrichtentechnik, Teil 1: optische Wellenleiter, Hüthig Verlag,
Unger, H.-G.:  Optische Nachrichtentechnik, Teil 2: Komponenten, Systeme, Messtechnik, Hüthig-Verlag,
Hunsperger, R. G.:  Integrated Optics: Theory and Technology, Springer Verlag,
Ebeling, K. J.:  Integrierte Optoelektronik, Springer Verlag,
Wrobel, C.:  Optische Übertragungstechnik in der Praxis, Hüthig Verlag,
Mahlke, G., Gössing, P.:  Lichtwellenleiterkabel, Publicis MCD Verlag,
Strobel, O.:  Lichtwellenleiter-Übertragungs- und Sensortechnik, VDE Verlag,
Heinlein, W.:  Grundlagen der faseroptischen Übertragungstechnik, Teubner Verlag.

[updated 12.03.2010]
[Sun May 28 11:27:57 CEST 2023, CKEY=eoe, BKEY=em, CID=E911, LANGUAGE=en, DATE=28.05.2023]