htw saar Piktogramm
Back to Main Page

Choose Module Version:
XML-Code

flag

Control Engineering

Module name (EN): Control Engineering
Degree programme: Automotive Engineering, Bachelor, ASPO 01.04.2016
Module code: FT24.1
Hours per semester week / Teaching method: 2V+2U (4 hours per week)
ECTS credits: 5
Semester: 3
Mandatory course: yes
Language of instruction:
German
Assessment:
Written exam 150 min.

[updated 30.09.2020]
Applicability / Curricular relevance:
DFBME-314 Mechanical Engineering, Bachelor, ASPO 01.10.2019, semester 3, mandatory course
FT24.1 Automotive Engineering, Bachelor, ASPO 01.10.2015, semester 3, mandatory course
FT24.1 Automotive Engineering, Bachelor, ASPO 01.04.2016, semester 3, mandatory course
FT24.1 Automotive Engineering, Bachelor, ASPO 01.10.2019, semester 3, mandatory course
Workload:
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
None.
Recommended as prerequisite for:
FT20 Electric Vehicle Drive Systems
FT21 Vehicle Combustion Engines


[updated 26.01.2016]
Module coordinator:
Prof. Dr. Hans-Werner Groh
Lecturer:
Prof. Dr. Hans-Werner Groh


[updated 12.07.2015]
Learning outcomes:
After successfully completing this course, students will be familiar with the basic concepts of control engineering and will be able to:
- apply their basic knowledge, as well as theoretical and mathematical contexts to the field of control engineering.
- solve unknown control engineering problems in control loop design and stability testing independently and with independently selected methods.
- apply what they have learned to new control engineering problems in the field of automotive engineering.


[updated 30.09.2020]
Module content:
- Introduction to systems theory: Basic terms and principles of control engineering, problems and examples from different areas
- Laplace transform:
Transfer function and frequency response
- Modeling, signal flow diagrams, analogies
- Response characteristics of controlled system and standard controllers (P,PI, PID, PDT1)
- Static and dynamic behavior of control loops
- System analysis with Bode plots (frequency response) and locus: Synthesis of closed control loops, control behavior, permanent control deviation, disturbance behavior
- Stability analysis:
pole-zero distribution, Routh-Hurwitz stability criterion, Nyquist stability criterion
- Controller design with the root locus method
- Linear and time-discrete controls, stability of time-discrete systems
- Simulation with MATLAB/Simulink


[updated 30.09.2020]
Teaching methods/Media:
Lecture notes and lab experiment

[updated 30.09.2020]
Recommended or required reading:
- Unbehauen, H.: Regelungstechnik: Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme, Fuzzy-Regelsysteme, 15. Auflage: Vieweg + Teubner Verlag Wiesbaden, 2008, ISBN: 978-3-8348-0497-6 (Print), 978-3-8348-9491-5 (Online)
- Lutz, H.; Wendt, W.: Taschenbuch der Regelungstechnik mit MATLAB und Simulink, 9. Auflage, Harri Deutsch Verlag, Frankfurt am Main, 2012, ISBN 978-3-8171-1895-3
- Föllinger, O.: Regelungstechnik : Einführung in die Methoden und ihre Anwendung, 10. Auflage, Hüthig Verlag, Heidelberg, 2008, ISBN: 978-3-7785-2970-6
- Samal, E.: Grundriss der praktischen Regelungstechnik, 17., verbesserte und erweiterte Auflage; R. Oldenbourg Verlag München, 1991, ISBN 3-486-21923-5


[updated 30.09.2020]
[Sat Dec  4 03:18:37 CET 2021, CKEY=fsur, BKEY=fz3, CID=FT24.1, LANGUAGE=en, DATE=04.12.2021]