htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
emphasize objectives XML-Code

flag

Fundamentals of Computational Fluid Dynamics (CFD)

Module name (EN):
Name of module in study programme. It should be precise and clear.
Fundamentals of Computational Fluid Dynamics (CFD)
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Automotive Engineering, Bachelor, ASPO 01.10.2019
Module code: FT66
SAP-Submodule-No.:
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
P241-0156
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
4V (4 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
5
Semester: 6
Mandatory course: no
Language of instruction:
German
Assessment:
Written exam and presentation

[updated 30.09.2020]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

FT66 (P241-0156) Automotive Engineering, Bachelor, ASPO 01.04.2016 , semester 6, optional course, general subject
FT66 (P241-0156) Automotive Engineering, Bachelor, ASPO 01.10.2019 , semester 6, optional course, general subject
MAB.4.2.2.19 (P241-0156) Mechanical and Process Engineering, Bachelor, ASPO 01.10.2013 , optional course, specialisation
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
None.
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Marco Günther
Lecturer:
Dipl.-Ing. Igor Golberg


[updated 11.05.2019]
Learning outcomes:
After successfully completing this module, students will be familiar with the essential elements and functionalities of current software programs, which are necessary to perform numerical flow simulations. They will be familiar with the principles and fundamentals of creating numerical meshes, setting up and performing flow simulations and the essential methods for evaluating results. They will be able to model simple flow problems independently using software, apply standard methods of calculation and interpret the results.

[updated 30.09.2020]
Module content:
Fundamentals and techniques for generating geometries and meshes (unstructured and structured) for numerical calculations, flow simulations using software tools from ANSYS (ICEMcfd, CFX, Fluent, Workbench), calculating incompressible flows, selecting and applying boundary conditions, visualizing and analyzing results, application based on practical real-world problems and examples such as porous media, intercoolers, heating of a brake disc during emergency braking.

[updated 30.09.2020]
Teaching methods/Media:
Lecture and supervised exercises on the computer.

[updated 30.09.2020]
Recommended or required reading:
Literature will be announced in the lecture.

[updated 30.09.2020]
[Fri Apr 19 17:04:28 CEST 2024, CKEY=mgdnsxa, BKEY=fz4, CID=FT66, LANGUAGE=en, DATE=19.04.2024]