htw saar Piktogramm
Back to Main Page

Choose Module Version:



Module name (EN): Mathematics
Degree programme: International Business, Bachelor, ASPO 01.10.2008
Module code: BAIBA-140
Hours per semester week / Teaching method: 4V (4 hours per week)
ECTS credits: 6
Semester: 1
Mandatory course: yes
Language of instruction:
Written exam

[updated 10.12.2020]
Curricular relevance:
BAIBA-140 International Business, Bachelor, ASPO 01.10.2008, semester 1, mandatory course
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 180 hours (equivalent to 6 ECTS credits).
There are therefore 135 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
Recommended as prerequisite for:
BAIBA-240 Statistics and Market Research
BAIBA-410 Investment and Financing

[updated 15.02.2011]
Module coordinator:
Prof. Dr. Teresa Melo
Dozenten des Studiengangs

[updated 05.07.2012]
Learning outcomes:
Mathematics provides the essential tools and aids for almost all applications in the field of business administration and is thus, a central component of business administration education.
After successfully completing thsi course, students will:
•        be able to model and solve problems in the field of analysis.
•        have mastered the basic techniques of differential and integral calculus.
•        be able to apply differential calculus to determine extreme values, both for functions of one or more variables.
•        have mastered basic concepts of financial mathematics with regard to interest, annuity and sinking fund calculations. In particular, the comparison and evaluation of capital flows using various models.
•        Students will have advanced knowledge in the field of linear algebra. In particular, the basic features of matrix calculation and their use in modeling business processes (e.g. production processes).
•        Techniques for solving linear systems of equations.
•        Understanding of the possible applications of Operations Research (OR) in operational decision-making processes.
•        Analytical methods to solve linear optimization problems and skills for the economic interpretation of solutions
•        Using standard software to solve linear optimization problems.
•        Scientific work and the ability to abstract.

[updated 10.12.2020]
Module content:
Differential calculus:
•        Functions of a variable, differentiation rules
•        Applying differential calculus to basic business functions
•        Functions with several variables, partial derivatives, extreme values with and without consideration of constraints
Integral calculus:
•        Root functions, elementary integration rules
•        Special integration techniques: partial integrations, substitution
•        Specific integral and economic applications of integral calculus
Elements of financial mathematics:
•        Interest-rate models
•        Calculating annuities
•        Calculating sinking funds
Basics of linear algebra:
•        Description of business processes using matrices (e. g. production processes)
•        Elementary calculations with matrices, matrix multiplication
•        Creation of linear systems of equations and solution methods (e. g. Gauss algoritm)
Linear programming:
•        Introduction and modeling for business management problems (e.g. production, logistics, marketing, investment)
•        Graphical solution method for solving linear optimization problems
•        Simplex method and economic interpretation of solutions

[updated 10.12.2020]
Teaching methods/Media:
Lecture and discussion in a large group using transparencies (projector) and the blackboard (theory and example calculations).
The lecture will be supplemented by exercises and tutorials. A large number of exercise sheets covering the wide range topics in this module will be provided. Afterwards, the solutions will be discussed with the students.
Both the lecture notes and the exercise sheets will be available to students in electronic form.

[updated 10.12.2020]
Recommended or required reading:
Gohout, Operations Research: Einige ausgewählte Gebiete der linearen und nichtlinearen Optimierung“, 4. erw. Auflage, Oldenbourg Verlag, 2009
Karmann, Mathematik für Wirtschaftswissenschaftler, 6. Auflage, Oldenbourg Verlag, München/Wien, 2008
Luderer, Einstieg in die Wirtschaftsmathematik, 8. überarb. u. erw. Auflage, Vieweg+ Teubner, Wiesbaden, 2011
Salomon/Poguntke, Wirtschaftsmathematik, 2. Auflage, Fortis Verlag, Köln, 2003
Sydsaeter/Hammond, Mathematik für Wirtschaftswissenschaftler: Basiswissen mit Praxisbezug, 3. Auflage, Pearson Studium, München, 2008
Tietze, Einführung in die angewandte Wirtschaftsmathematik, 15. Auflage, Vieweg, Wiesbaden, 2010
Tietze, Einführung in die Finanzmathematik - Klassische Verfahren und neuere Entwicklungen: Effektivzins- und Renditeberechnung, Investitionsrechnung, Derivative Finanzinstrumente, 10. aktualisierte Auflage, Vieweg+Teubner, Wiesbaden, 2010
Werners, Grundlagen des Operations Research mit Aufgaben und Lösungen, 2. Auflage, Springer, Berlin/Heidelberg, 2008
Zimmermann: Operations Research: Methoden und Modelle für Wirtschaftsingenieure, Betriebswirte, Informatiker, 2. Auflage, Vieweg, Wiesbaden, 2008
English literature:
Hillier, Lieberman: Introduction to Operations Research, 9th edition, McGraw Hill Higher Education, 2010
Simon, Blume: Mathematics for Economists, W.W. Norton Company, New York, London, 1994
Sydsæter, Hammond: Essential Mathematics for Economic Analysis; 3rd edition, Prentice Hall, 2008
Sydsæter, Hammond, Seierstad, Strøm: Further Mathematics for Economic Analysis, 2nd edition, Prentice Hall, 2008
Winston: Operations Research: Applications and Algorithms, 4th edition, Duxbury Press 2004

[updated 10.12.2020]
[Tue Sep 28 19:41:38 CEST 2021, CKEY=ima, BKEY=ibw, CID=BAIBA-140, LANGUAGE=en, DATE=28.09.2021]