htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
emphasize objectives XML-Code

flag

Numerical Mathematics and Numerical Simulation

Module name (EN):
Name of module in study programme. It should be precise and clear.
Numerical Mathematics and Numerical Simulation
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Mechanical and Process Engineering, Bachelor, ASPO 01.10.2013
Module code: MAB.4.1.NMS
SAP-Submodule-No.:
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
P241-0094, P241-0095
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
4V (4 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
5
Semester: 4
Mandatory course: yes
Language of instruction:
German
Assessment:
Written exam 120 min.

[updated 30.09.2020]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

DFBME-412 (P610-0331, P610-0549, P610-0570, P610-0571) Mechanical Engineering, Bachelor, ASPO 01.10.2019 , semester 4, mandatory course
DFBME-412 (P610-0331, P610-0549, P610-0570, P610-0571) Mechanical Engineering, Bachelor, ASPO 01.10.2023 , semester 4, mandatory course
EE-K2-540 Energy system technology / Renewable energies, Bachelor, ASPO 01.04.2015 , semester 5, optional course, engineering
FT18 (P241-0094, P241-0095) Automotive Engineering, Bachelor, ASPO 01.10.2011 , semester 4, mandatory course
FT18 (P241-0094, P241-0095) Automotive Engineering, Bachelor, ASPO 01.10.2015 , semester 4, mandatory course
FT18 (P241-0094, P241-0095) Automotive Engineering, Bachelor, ASPO 01.04.2016 , semester 4, mandatory course
FT18 (P241-0094, P241-0095) Automotive Engineering, Bachelor, ASPO 01.10.2019 , semester 4, mandatory course
MAB.4.1.NMS (P241-0094, P241-0095) Mechanical and Process Engineering, Bachelor, ASPO 01.10.2013 , semester 4, mandatory course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
MAB.1.1.MAT1 Engineering Mathematics I
MAB.2.1.MAT2 Engineering Mathematics II
MAB.3.4.MAT3 Engineering Mathematics III


[updated 09.12.2010]
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Marco Günther
Lecturer:
Prof. Dr.-Ing. Helge Frick


[updated 09.12.2010]
Learning outcomes:
After successfully completing this course, students will:
- solve fundamental problems using the principles of numerics and standard numerical methods
- use their newly acquired practical knowledge in problem solving to engineer simulations of dynamic systems
- be able to use MATLAB
- develop calculation programs
- program and use MATLAB script files and Simulink model files

[updated 30.09.2020]
Module content:
Linear algebra: Definition of linear systems of equations, Application examples in engineering, Numerical solution methods: direct solvers, iterative solvers
Nonlinear equations: Determining a zero point, Nonlinear systems
Introduction to Matlab using a computer
Interpolation: Newton polynomials, Spline functions
Approximation (linear discrete Gaussian approximation)
Numerical differentiation and integration
Ordinary differential equations: Initial value problems, boundary value problems
Introduction to Simulink on the computer

[updated 30.09.2020]
Teaching methods/Media:
Lecture notes, PowerPoint presentation/handouts, exercises

[updated 30.09.2020]
Recommended or required reading:
- Bartsch H.-J.: Taschenbuch Mathematischer Formeln
- Beucher O.: MATLAB und Simulink
- Faires J.D., Burden R.L.: Numerische Methoden
- Schwarz H.R., Köckler N.: Numerische Mathematik

[updated 30.09.2020]
[Tue Oct 15 20:01:02 CEST 2024, CKEY=mnmuns, BKEY=m, CID=MAB.4.1.NMS, LANGUAGE=en, DATE=15.10.2024]