Numerical Methods and Statistics
MTM.NUS
mechm
5
V
1
U
7
1
yes
German
Written exam 150 min.
MTM.NUS
Mechatronics
1
mandatory course
90 class hours (= 67.5 clock hours) over a 15-week period.The total student study time is 210 hours (equivalent to 7 ECTS credits).There are therefore 142.5 hours available for class preparation and follow-up work and exam preparation.
MTM.SIM
Simulation of Mechatronic Systems
Prof. Dr. Gerald Kroisandt
gkr
Prof. Dr. Gerald Kroisandt
gkr
After successfully completing this part of the module, students will have mastered the use of MATLAB and Simulink.
Students will be able to represent linear and non-linear systems of equations in the programs and will be familiar with various solution methods.
They will understand the significance of the Fourier transform and will be able to calculate and evaluate given time signals independently.
Based on the theory of differentiation and integration, they will be able to differentiate and integrate functions numerically using various methods.
Afterwards, students will be able to apply the different methods to practical examples.
In the field of statistics, they will be proficient in the graphical representation of a single characteristic, as well as the calculation of various key figures.
In order to evaluate different characteristics, students will be familiar with and be able to apply different measures of correlation.
They will also be able to carry out a linear regression and know how to transform data if necessary.
In the field of probability theory, students will understand the basic concepts and have a repertoire of different distributions for various standard applications.
Finally, they will be able to use key figures of the data to infer the optimal parameters of a chosen model and derive various statements about further events (tests).
I. Numerical methods
1. Working with MATLAB and Simulink (repetition)
2. Linear and nonlinear systems of equations
3. Discrete/Fast Fourier transform
4. Numerical Integration and Differentiation (continuation from Bachelor program)
5. Applications (simulation of mechatronic systems) - Mini-project
II. Statistics
1. Descriptive statistics
1.1 Analyzing observation data
1.2 Evaluation of several characteristics
1.3 Linear regression
2. Principles of probability calculus
2.1 Definition of probability
2.2 Discrete and continuous random variables and their distributions
2.3. Special continuous and discrete distributions
2.4. Limit theorems
3. Inferential statistics
3.1 Estimating probabilities, mean value and dispersion
3.2 Confidence intervals
3.3 Tests
Blackboard, projector, transparencies with lecture notes
Brigham: FFT-Anwendungen, Oldenburg Verlag 1997
E. Cramer, U. Kamps: Grundlagen der Wahrscheinlichkeitsrechnung und Statistik, Springer 2017
Sun Nov 27 20:23:36 CET 2022, CKEY=mnus, BKEY=mechm, CID=[?], LANGUAGE=en, DATE=27.11.2022