Back to Main Page

Choose Module Version:

## Higher and Applied Mathematics

 Module name (EN): Higher and Applied Mathematics Degree programme: Engineering and Management, Master, ASPO 01.10.2004 Module code: MAM-7.1 Hours per semester week / Teaching method: 8V (8 hours per week) ECTS credits: 10 Semester: 7 Mandatory course: yes Language of instruction: German Assessment: Two written exams [updated 12.09.2004] Applicability / Curricular relevance: MAM-7.1 Engineering and Management, Master, ASPO 01.10.2004, semester 7, mandatory course Workload: 120 class hours (= 90 clock hours) over a 15-week period.The total student study time is 300 hours (equivalent to 10 ECTS credits).There are therefore 210 hours available for class preparation and follow-up work and exam preparation. Recommended prerequisites (modules): None. Recommended as prerequisite for: Module coordinator: Prof. Dr.-Ing. Helge Frick Lecturer: Prof. Dr.-Ing. Helge Frick [updated 06.09.2004] Learning outcomes: The focus of this course is on teaching how to apply numerical methods and simulation techniques to engineering problems. Areas covered within the field of statistical analysis of complex data sets include: techniques of experimental planning, statistical quality control and multivariate statistical data analysis. [updated 12.09.2004] Module content: Numerical Mathematics and Simulation II 1. Introduction to MATLAB, SIMULINK and FEMLAB 2. Discrete and fast Fourier transforms 3. Generating curves and surfaces (spline and curve fitting toolboxes) 4. Partial differential equations (boundary value and initial boundary value problems) 5. Numerical solutions of PDEs (FEM, BEM, FVM, FDM) Statistics and AnalysisI. Analysis   1. Functions with several independent variables   2. Vector analysisII. Statistics   1. Descriptive statistics   2. Probability calculus   3. Introduction to the methods of inferential statistics   4. Introduction to the statistics package R   5. Advanced statistical methods [updated 14.08.2012] Teaching methods/Media: Lecture notes:  ‘Deskriptive Statistik’, and useful formulae (set 1)Lecture notes:  ‘Wahrscheinlichkeitsrechnung’, and useful formulae (set 2) [updated 12.09.2004] Recommended or required reading: BURG:  Höhere Mathematik für Ingenieure, Band 3+4+5, Teubner VerlagKNABNER/ANGERMANN:  Numerik partieller Differentialgleichungen, SpringerWEBER:  Statistik für Ingenieure, Teubner Vlg. StuttgartHARTUNG, ERPELT:  Multivariate Statistik, Oldenbourg-VerlagWALZ, GRABOWSKI:  Lexikon der Stochastik mit Beispielen, Spektrum Akademischer Verlag [updated 12.09.2004]
```[Mon Nov 29 19:32:37 CET 2021, CKEY=mhuam, BKEY=mm0, CID=MAM-7.1, LANGUAGE=en, DATE=29.11.2021]
```