htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
emphasize objectives XML-Code

flag


System Theory and Control Engineering 2

Module name (EN):
Name of module in study programme. It should be precise and clear.
System Theory and Control Engineering 2
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Mechatronics and Sensor Technology, Bachelor, ASPO 01.10.2019
Module code: MST2.SYS2
SAP-Submodule-No.:
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
P231-0081, P231-0082
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
2V+2U+2P (6 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
7
Semester: 5
Mandatory course: yes
Language of instruction:
German
Assessment:
Written exam 150 min. (100%) + Practical course (ungraded)

[updated 06.11.2020]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

MST2.SYS2 (P231-0081, P231-0082) Mechatronics and Sensor Technology, Bachelor, ASPO 01.10.2019 , semester 5, mandatory course
MST2.SYS2 (P231-0081, P231-0082) Mechatronics and Sensor Technology, Bachelor, ASPO 01.10.2020 , semester 5, mandatory course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
90 class hours (= 67.5 clock hours) over a 15-week period.
The total student study time is 210 hours (equivalent to 7 ECTS credits).
There are therefore 142.5 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
MST2.SYS1 System Theory and Control Engineering 1


[updated 21.01.2020]
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Benedikt Faupel
Lecturer:
Prof. Dr.-Ing. Barbara Hippauf (practical training)
Prof. Dr. Benedikt Faupel (lecture)


[updated 21.01.2020]
Learning outcomes:
After successfully completing this course, students will be familiar with the subject-specific terminology of continuous control loop structures and be able to analyze the behavior and influencing variables in control loop structures in the time and frequency domain. They will be able to classify different types of controllers and design technical components for their realization. Based on standard setting procedures, students will be able to implement requirements on the quality of control loops for the design of control parameters, which will be adapted and optimized using simulation models and case studies.
 
The practical course will provide an insight into computer-based measurement and control technology with application-oriented, flexibly designed experiments.

[updated 06.11.2020]
Module content:
1. Basics of control engineering
1.1. Control system elements and signal flow diagrams
1.2. Definitions, standards und terminology, differences between feedback control / feedforward control
1.3. Practical tasks of control engineering in process plants
2. Static and dynamic behavior of control loops
2.1. Control and disturbance transfer behavior
2.2. Determining the steady-state control deviation for different input wave forms
3. Design / adjustment / optimization of controllers in time domain
3.1. Setting control loops to defined damping
3.2. Setting control loops according to Ziegler-Nicols, / Chiens, Hrones, Reswick
3.3. Tuning according to the T-Sum Rule
3.4. Tuning according to amplitude and symmetrical optimum
4. Design, controller adjustment and optimization according to the frequency response method
4.2. Tuning according to phase and gain margin
4.3. Setting controller parameters in a Bode plot
5. Discontinuous controllers (two- and three-point controllers)
5.1. Time response
5.2. Optimization / setting discontinuous controllers
6. Applications - control loop behavior and controller design with MATLAB/SIMULINK
7. Example implementation of software controllers on PLC systems

[updated 06.11.2020]
Teaching methods/Media:
Presentation, blackboard, lecture notes

[updated 06.11.2020]
Recommended or required reading:
Dorf, Richard C.; Bishop, Robert H.: Moderne Regelungssysteme, Pearson, 2006, 10. Aufl.
Föllinger, Otto: Laplace- Fourier- und z-Transformation, VDE, (latest edition)
Föllinger, Otto: Regelungstechnik, VDE, (latest edition)
Grupp Frieder; Grupp Florian: MATLAB für Ingenieure, Oldenbourg, München, (latest edition)
Lutz, Holder; Wendt, Wolfgang: Taschenbuch der Regelungstechnik, Harri Deutsch, (latest edition)
Schulz, Gerd: Regelungstechnik, Oldenbourg, (latest edition)
Unbehauen, Heinz: Regelungstechnik, Vieweg + Teubner, (latest edition)

[updated 06.11.2020]
[Wed Sep 11 21:42:08 CEST 2024, CKEY=m3MST2.SYS2, BKEY=mst3, CID=MST2.SYS2, LANGUAGE=en, DATE=11.09.2024]