htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:


Physics 3

Module name (EN):
Name of module in study programme. It should be precise and clear.
Physics 3
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Mechatronics and Sensor Technology, Bachelor, ASPO 01.10.2020
Module code: MST2.PH3
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
4V+3PA (7 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
Semester: 3
Mandatory course: yes
Language of instruction:
Project work

[updated 05.10.2020]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

MST2.PH3 (P231-0064) Mechatronics and Sensor Technology, Bachelor, ASPO 01.10.2019 , semester 3, mandatory course
MST2.PH3 (P231-0064) Mechatronics and Sensor Technology, Bachelor, ASPO 01.10.2020 , semester 3, mandatory course
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
105 class hours (= 78.75 clock hours) over a 15-week period.
The total student study time is 210 hours (equivalent to 7 ECTS credits).
There are therefore 131.25 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
MST2.PH1 Physics 1
MST2.PH2 Physics 2

[updated 12.04.2021]
Recommended as prerequisite for:
MST2.ATO Atomic and Solid-State Physics
MST2.SE2 Sensor Technology 2

[updated 12.04.2021]
Module coordinator:
Prof. Dr. Martin Löffler-Mang
Lecturer: Prof. Dr. Martin Löffler-Mang

[updated 01.10.2020]
Learning outcomes:
After successfully completing this course, students will have mastered the basics of vibrations and waves. They will be able to independently set up a differential equation based on a balance (forces, energy, currents, etc.) and find suitable solutions. They will be able to understand analogies and can transfer the repsective principles to other areas of physics. Students will be able to design and conduct their own simple experiments and interpret the results.
In addition, the students will be able to carry out small projects. They will be familiar with the brainstorming process for brainstorming ideas, be able to plan resources, allocate their project work time and finally settle the project costs. They will be able to work together in teams, solve minor conflicts themselves and present their own project results to the public.

[updated 05.10.2020]
Module content:
The course deals with physics topics and provides an introduction to project management.
Physics topics:
1. 2.1 Harmonic oscillations
2. 2.2 Damped oscillations
3. Forced vibrations and resonance
4. Superposition of vibrations
5. One-dimensional and harmonic waves
6. Water waves, sound waves
7. Electromagnetic waves
8. Wave optics
Project management:
1. Brainstorming
2. Planning resources
3. Time management
4. Project cost accounting

[updated 05.10.2020]
Teaching methods/Media:
The course is divided into an experimental physics lecture part, as well as workshops and seminars on project management. In an independent teamwork phase in the last weeks of the semester, students will plan, built and present exhibits for the "Open House". The examination will take place on the day of the "Open House", the project results will be publicly displayed, summarized on a poster and students will provide technical documentation.

[updated 05.10.2020]
Recommended or required reading:
Alonso, Finn: Physik        
Hecht, Zajac: Optics (Optik)
Hering, Martin, Storer: Physik für Ingenieure
Stößel: Fourier-Optik
Lindner: Physikalische Aufgaben
Löffler-Mang: Optische Sensoren
Handbuch Projektmanagement Band 1 und 2, GPM Gesellschaft für Projektmanagement, Verlag TÜV Rheinland
Einführung in die Allgemeine Betriebswirtschaftslehre, Wöhe, Verlag Vahlen

[updated 05.10.2020]
[Tue Sep 26 15:32:35 CEST 2023, CKEY=m3MST2.PH3, BKEY=mst4, CID=MST2.PH3, LANGUAGE=en, DATE=26.09.2023]